Specifications for Commercial Refrigeration

Whitney Leeman, Ph.D.

ARB Workshop on Stationary Source High-GWP

Early Action Items

February 15, 2008

Outline

- Background
- Data Sources, Emissions and Trends
- Existing Regulations & International Experience
- Potential Control Strategies
- Emission Reduction Projections
- Regulatory Concepts & Costs
- Data Gaps, Ongoing Research, Questions
- Working Group Formation
- Timeline & Contact Information

Background

Types of Commercial Refrigeration

Systems

- Direct expansion (DX)
 systems used in
 supermarkets, cold
 storage warehouses,
 industrial food processing
- Standalone equipment (open and closed display cases) and refrigerated vending machines

Background (continued)

Commercial Refrigeration Systems Emissions Sources

- Direct refrigerant emissions occur during equipment manufacturing/charging, lifetime (from leaks, ruptures, maintenance), and end-of life (EOL)
- Indirect emissions (CO₂E emissions resulting from energy use) occur during equipment manufacture, lifetime operation, and EOL

Existing Systems

Direct Expansion (DX) Systems

- Also called centralized or multiplex systems
 - Supermarkets, cold storage warehouses, built-up refrigeration/freezing systems for food processing, etc.
- High direct emissions
 - Leaks result from vibration and thermal expansion of numerous pipes, threaded joints, fittings, and valves
 - Ruptures can result in huge refrigerant losses
- High indirect emissions due to energy inefficient system components, designs
 - Lack of heat recovery in some systems, open cases, poor air curtains, inefficient lighting, use of anti-sweat heaters, etc.

Existing Systems (continued)

- Standalone Equipment and Vending Machines
 - Low direct emissions (EOL), high indirect emissions
 - Large numbers of standalone cases and vending machines in CA
 - ~500,000 refrigerated vending machines in CA
 - Open and closed standalone cases yet to be enumerated

Data Sources, Emissions, and Trends: Rule 1415

- Rule 1415 Data
 - Reporting of annual ODS usage for RAC systems > 50 lbs in SCAQMD only
 - Leak rates exceed 35% for 11% of systems, 100% for 2.7% of systems
 - The top 15 SIC codes emit 80% of total

		Emissions	
SIC Code	Description	MTCO2E/year	Facilities
5400	FOOD STORE	94820	255
5490	GROCERY-RETAIL	54116	207
2013	FOOD PROCESSOR	11001	5
4960	DISTRICT HEATING AND COOLING	6188	10
8700	OFFICE BUILDING	5137	141
4810	TELEPHONE COMMUNICATION	5071	137
	WHOLESALE TRADE NON-DURABLE		
5142	GOODS/PACKAGED FROZEN FOODS	4643	1

Data Sources, Emissions, and Trends: ARMINES

- Commercial RAC Inventory Development for California
 - Contractor Denis Clodic/ARMINES
 - Preliminary estimates, DX systems

Direct emissions or leaks	Indirect emissions or
	energy use
Leak rates ~30% per year or ~2.7 MMTCO ₂ E	Indirect CO ₂ emissions ~2.3 MMTCO ₂ E
Typical CA DX system charge ~2800 lbs (large release potential)	
Banked refrigerant in CA DX systems is ~7.5 MMTCO ₂ E	

Data Sources, Emissions, and Trends: ARMINES (continued)

- CA RAC Inventory: Preliminary Estimates, Continued
 - Standalone systems, direct emissions
 - Emission rates estimated at 1% of the charge per year for stand-alone equipment, most of which are EOL emissions
 - Standalone systems, indirect emissions
 - More standalone systems in CA than anticipated; energy use ~50% of the commercial refrigeration total

Data Sources, Emissions, and Trends: USEPA Vintaging Model

- Estimated CA Commercial/Industrial/Cold Storage Refrigeration Emissions
 - HFC emissions ~2.5 MMTCO₂E
 - ODS emissions ~6 MMTCO₂E

2006 CA Emission Sources

Data Sources, Emissions, and Trends: USEPA Vintaging Model

- Estimated CA Commercial/Industrial/Cold Storage Refrigeration Banks
 - HFC Banks ~12.5 MMTCO₂E
 - ODS Banks ~35 MMTCO₂E

Existing Regulations

- ODSs Have Some Sales, Record-Keeping/Reporting, Technician Certification, and Emissions Restrictions
 - Section 608 of CAAAs and SCAQMD Rule
 1415
- HFCs Subject to "No Venting"
 Provision of CAAAs, Section 608

International Experience

STEK Regulation

- The Dutch regulation on leak-free refrigeration equipment, which includes the following:
 - Flared joints shall not be used
 - Pipes shall be joined by welded or brazed joints
 - Systems with a charge >3 kg shall be inspected annually
 - Systems with a charge of >1000 kg shall be under constant supervision
 - Logbooks must be kept for all systems with a charge >3 kg
 - Refill or top-off is only permitted if leaks are identified and repaired

International Experience (continued)

EU F-Gas Regulation

- Similar to, but more restrictive than, Section 608 of the CAAAs
 - Covers only Kyoto gases
 - Requires containment, record-keeping, recovery, training/certification, reporting, labeling, use control
 - Also specifies certain market prohibitions (shoes and tires containing SF₆, one-component foams, one-way cylinders, aerosols, etc.)

Potential Control Strategies

DX Systems

- Direct Emissions Reduction
 - Indirect or Secondary Loop (SL) Systems
 - Can utilize low-GWP refrigerants, or significantly reduced quantities of high-GWP refrigerants
 - Charge reduction important to reduce emissions from ruptures
 - Automatic leak detection in machine rooms possible
 - Benefits include easier leak detection/repair, fewer refrigerant purchases

Potential Control Strategies (continued)

DX Systems, Continued

- Indirect Emissions Reduction
 - Machine Room Technologies
 - Evaporative condensers
 - Floating head pressure controls
 - Heat recovery
 - Display Case Technologies
 - Add doors to display cases
 - Improved air curtains
 - Energy-efficient reach-ins, evaporator and condenser fan motors, compressor systems, lighting
 - Anti-sweat heater controls
 - Hot gas defrost

Potential Control Strategies (continued)

- Standalone Systems and Vending Machines
 - Direct Emissions Reduction
 - Alternative refrigerants currently possible (i.e. CO₂)
 - Future innovations may include thermoacoustic or magnetic refrigeration

Potential Control Strategies (continued)

- Standalone Systems and Vending Machines
 - Indirect Emissions Reduction
 - Compressor and component improvements (i.e. efficient lighting, fans, anti-sweat heaters, addition of doors)
 - USDOE is developing energy conservation standards for:
 - Self-contained and remote display cases (ASHRAE 72, 2005, for open and closed display cases)
 - Vending machines (ASHRAE 32.1, 2004)
 - Walk-in coolers and freezers (no test methods yet)

Emission Reduction Projections

 DX System Direct Emissions 2020 Forecast: BAU, SL, and SL With Low-GWP Refrigerants

Source: Interim Draft Report, ARMINES, Centre énergétique et procédés - CEP http://www-cep.ensmp.fr/english/

Business As Usual

Secondary Loop (SL)

SL + Low-GWP

Emission Reduction Projections (continued)

- Energy Savings For CA Supermarkets
 - 30% savings relative to BAU
 - 0.7 TWh/year or 0.3 MMTCO₂E/year, in 2007; 3 MMTCO₂E by 2020

Regulatory Concepts

New Refrigeration Systems

- Limit direct emissions to X% for all new systems
 - Will likely require installation of indirect systems
- Full accessibility to all piping
- Automatic leak detection
- Existing and New Retail Food Systems
 - Increase energy efficiency by 30%

Costs

First Approximation of Costs

- Installation costs expected to dominate over energy saving device costs for new systems
 - USEPA and Oak Ridge National Lab estimate that for a SL system with HFC refrigerant, installation costs will be 20% higher than baseline DX system
 - Using ammonia refrigerant results in installation costs
 75% higher than the baseline case
 - Maintenance costs are expected to be lower than for the baseline case

Costs (continued)

- First Approximation of Costs,
 Continued
 - Costs could largely be offset by maintenance, refrigerant, and energy savings benefits
 - Benefits depend largely on future refrigerant and energy costs

Data Gaps, Ongoing Research

Data Gaps

 Costs, benefits, and payback periods associated with installing new systems and upgrading existing systems

Ongoing Research

 RAC inventory and energy efficiency contract with Denis Clodic/ARMINES

Questions

Questions

- What should trigger the upgrading of existing systems (i.e. repair or future compliance date)?
- Should DOE test methods be adopted earlier for standalone equipment and vending machines?

Working Group Formation

- Focused Technical Group Formation
- Identify Key Stakeholders and Agency Partners
- Meet at Least Twice, Over Several Months
- First Meeting in March 2008
- If Interested, Please Provide Your Information

Timeline (Estimated)

March 2008	Working Group/Stakeholder Formation
Summer 2008	Working Group/Stakeholder Consultation Meeting
Winter 2008	1st Public Workshop to Discuss Proposed Control Strategies and Options
Spring 2009	2 nd Working Group/Stakeholder Consultation Meeting
Winter 2009	2nd Public Workshop on Proposed Strategies
Summer 2010	Regulatory Language and ISOR Finalized
Winter 2010	Board Meeting on Action

Contact Information

Whitney Leeman, Ph.D.
 Greenhouse Gas Reduction Strategies Section
 916-327-9480

wleeman@arb.ca.gov

- More Information
 - Visit: http://www.arb.ca.gov/cc/commref/commref.htm
 - Join list serve at: http://www.arb.ca.gov/listserv/listserv.php

